General approach to error prediction in point registration
نویسندگان
چکیده
A method for the first-order analysis of the point registration problem is presented and validated. The method is a unified approach to the problem that allows for inhomogeneous and anisotropic fiducial localization error (FLE) and arbitrary weighting in the registration algorithm. Cross-covariance matrices are derived both for target registration error (TRE) and for weighted fiducial registration error (FRE). Furthermore, it is shown that for ideal weighting, in which the weighting matrix for each fiducial equals the inverse of the square root of the cross covariance of the two-space FLE for that fiducial, fluctuations of FRE and TRE are independent. These results are validated by comparison with previously published expressions for special cases and by simulation and shown to be correct. Furthermore, simulations for randomly generated fiducial positions and FLEs are presented that show that correlation is negligible (correlation coefficient < 0.1) for uniform weighting (i.e., no weighting) as well. From these results we conclude that measures of the goodness of fit of the fiducials, e.g., FRE, are unreliable estimators of registration accuracy, i.e., TRE, and should be avoided.
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملمدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...
متن کاملIdentification and risk assessment of midwife error in the labor using systematic human error reduction and prediction approach
Introduction: Labor is one of the most important wards of hospital, where human error is high. Midwifery errors in the maternity ward and in the delivery can be a serious threat to the health of the mother and the infant, resulting in increased treatment costs. Factors affecting human error are diversity in work, high workload, and fatigue. Therefore, this study aimed to evaluate the midwifery ...
متن کاملارائه یک رویکرد فازی برای بهینهسازی پیشبینی سری زمانی با مرتبه بالا
It is difficult to apply the real world’s conceptions due to their uncertainty. Generally, time series are known to be non-linear or non-stationary. Regarding these two features, a system should be sensitive enough to apply the unity of time series and repeat this sensitiveness in the prediction. A predict system can exactly scrutinize the hidden features of time series and also can have high p...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کامل